ROC & AUC
1. Confusion matrix
from sklearn.metrics import confusion_matrix
$ y_true = [2, 0, 2, 2, 0, 1]
$ y_pred = [0, 0, 2, 2, 0, 2]
$ confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
[0, 0, 1],
[1, 0, 2]])
2. Score
- accuary
- precision
- recall
- fall-out
- F score
- precision vs recall
- classification report
$ from sklearn.metrics import *
$ y_true = [0, 1, 2, 2, 2]
$ y_pred = [0, 0, 2, 2, 1]
$ target_names = ['class 0', 'class 1', 'class 2']
$ print(classification_report(y_true, y_pred, target_names=target_names))
precision recall f1-score support
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3
avg / total 0.70 0.60 0.61 5
3. ROC & AUC
- ROC (Receiver Operating Characteristic)
- AUC (Area Under the ROC Curve)
Reference